Discover the cosmos! Each day a different image or photograph of our fascinating universe is featured, along with a brief explanation written by a professional astronomer.
2011 November 1
Explanation: If you drop a hammer and a feather together, which reaches the ground first? On the Earth, it's the hammer, but is the reason only because of air resistance? Scientists even before Galileo have pondered and tested this simple experiment and felt that without air resistance, all objects would fall the same way. Galileo tested this principle himself and noted that two heavy balls of different masses reached the ground simultaneously, although many historians are skeptical that he did this experiment from Italy's Leaning Tower of Pisa as folklore suggests. A good place free of air resistance to test this equivalence principle is Earth's Moon, and so in 1971, Apollo 15 astronaut David Scott dropped both a hammer and a feather together toward the surface of the Moon. Sure enough, just as scientists including Galileo and Einstein would have predicted, they reached the lunar surface at the same time. The demonstrated equivalence principle states that the acceleration an object feels due to gravity does not depend on its mass, density, composition, colour, shape, or anything else. The equivalence principle is so important to modern physics that its depth and reach are still being debated and tested even today.
Authors & editors:
Robert Nemiroff
(MTU) &
Jerry Bonnell (UMCP)
NASA Official: Phillip Newman
Specific rights apply.
NASA Web
Privacy Policy and Important Notices
A service of:
ASD at
NASA /
GSFC
& Michigan Tech. U.